Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
The American journal of emergency medicine ; 2023.
Article in English | EuropePMC | ID: covidwho-2280208

ABSTRACT

Study objective During the COVID-19 pandemic, prescribing supplemental oxygen was a common reason for hospitalization of patients. We evaluated outcomes of COVID-19 patients discharged from the Emergency Department (ED) with home oxygen as part of a program to decrease hospital admissions. Methods We retrospectively observed COVID-19 patients with an ED visit resulting in direct discharge or observation from April 2020 to January 2022 at 14 hospitals in a single healthcare system. The cohort included those discharged with new oxygen supplementation, a pulse oximeter, and return instructions. Our primary outcome was subsequent hospitalization or death outside the hospital within 30 days of ED or observation discharge. Results Among 28,960 patients visiting the ED for COVID-19, providers admitted 11,508 (39.7%) to the hospital, placed 907 (3.1%) in observation status, and discharged 16,545 (57.1%) to home. A total of 614 COVID-19 patients (535 discharge to home and 97 observation unit) went home on new oxygen therapy. We observed the primary outcome in 151 (24.6%, CI 21.3–28.1%) patients. There were 148 (24.1%) patients subsequently hospitalized and 3 (0.5%) patients who died outside the hospital. The subsequent hospitalized mortality rate was 29.7% with 44 of the 148 patients admitted to the hospital dying. Mortality all cause at 30 days in the entire cohort was 7.7%. Conclusions Most patients discharged to home with new oxygen for COVID-19 safely avoid later hospitalization and few patients die within 30 days. This suggests the feasibility of the approach and offers support for ongoing research and implementation efforts.

2.
Ann Intern Med ; 176(4): 515-523, 2023 04.
Article in English | MEDLINE | ID: covidwho-2286161

ABSTRACT

BACKGROUND: Patients hospitalized with COVID-19 have an increased incidence of thromboembolism. The role of extended thromboprophylaxis after hospital discharge is unclear. OBJECTIVE: To determine whether anticoagulation is superior to placebo in reducing death and thromboembolic complications among patients discharged after COVID-19 hospitalization. DESIGN: Prospective, randomized, double-blind, placebo-controlled clinical trial. (ClinicalTrials.gov: NCT04650087). SETTING: Done during 2021 to 2022 among 127 U.S. hospitals. PARTICIPANTS: Adults aged 18 years or older hospitalized with COVID-19 for 48 hours or more and ready for discharge, excluding those with a requirement for, or contraindication to, anticoagulation. INTERVENTION: 2.5 mg of apixaban versus placebo twice daily for 30 days. MEASUREMENTS: The primary efficacy end point was a 30-day composite of death, arterial thromboembolism, and venous thromboembolism. The primary safety end points were 30-day major bleeding and clinically relevant nonmajor bleeding. RESULTS: Enrollment was terminated early, after 1217 participants were randomly assigned, because of a lower than anticipated event rate and a declining rate of COVID-19 hospitalizations. Median age was 54 years, 50.4% were women, 26.5% were Black, and 16.7% were Hispanic; 30.7% had a World Health Organization severity score of 5 or greater, and 11.0% had an International Medical Prevention Registry on Venous Thromboembolism risk prediction score of greater than 4. Incidence of the primary end point was 2.13% (95% CI, 1.14 to 3.62) in the apixaban group and 2.31% (CI, 1.27 to 3.84) in the placebo group. Major bleeding occurred in 2 (0.4%) and 1 (0.2%) and clinically relevant nonmajor bleeding occurred in 3 (0.6%) and 6 (1.1%) apixaban-treated and placebo-treated participants, respectively. By day 30, thirty-six (3.0%) participants were lost to follow-up, and 8.5% of apixaban and 11.9% of placebo participants permanently discontinued the study drug treatment. LIMITATIONS: The introduction of SARS-CoV-2 vaccines decreased the risk for hospitalization and death. Study enrollment spanned the peaks of the Delta and Omicron variants in the United States, which influenced illness severity. CONCLUSION: The incidence of death or thromboembolism was low in this cohort of patients discharged after hospitalization with COVID-19. Because of early enrollment termination, the results were imprecise and the study was inconclusive. PRIMARY FUNDING SOURCE: National Institutes of Health.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hemorrhage , Venous Thromboembolism , Adult , Female , Humans , Male , Middle Aged , Anticoagulants/adverse effects , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Hemorrhage/chemically induced , Hospitalization , Prospective Studies , SARS-CoV-2 , Treatment Outcome , Venous Thromboembolism/drug therapy
3.
Am J Emerg Med ; 68: 47-51, 2023 06.
Article in English | MEDLINE | ID: covidwho-2280209

ABSTRACT

STUDY OBJECTIVE: During the COVID-19 pandemic, prescribing supplemental oxygen was a common reason for hospitalization of patients. We evaluated outcomes of COVID-19 patients discharged from the Emergency Department (ED) with home oxygen as part of a program to decrease hospital admissions. METHODS: We retrospectively observed COVID-19 patients with an ED visit resulting in direct discharge or observation from April 2020 to January 2022 at 14 hospitals in a single healthcare system. The cohort included those discharged with new oxygen supplementation, a pulse oximeter, and return instructions. Our primary outcome was subsequent hospitalization or death outside the hospital within 30 days of ED or observation discharge. RESULTS: Among 28,960 patients visiting the ED for COVID-19, providers admitted 11,508 (39.7%) to the hospital, placed 907 (3.1%) in observation status, and discharged 16,545 (57.1%) to home. A total of 614 COVID-19 patients (535 discharge to home and 97 observation unit) went home on new oxygen therapy. We observed the primary outcome in 151 (24.6%, CI 21.3-28.1%) patients. There were 148 (24.1%) patients subsequently hospitalized and 3 (0.5%) patients who died outside the hospital. The subsequent hospitalized mortality rate was 29.7% with 44 of the 148 patients admitted to the hospital dying. Mortality all cause at 30 days in the entire cohort was 7.7%. CONCLUSIONS: Most patients discharged to home with new oxygen for COVID-19 safely avoid later hospitalization and few patients die within 30 days. This suggests the feasibility of the approach and offers support for ongoing research and implementation efforts.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/therapy , Retrospective Studies , Pandemics , Hospitalization , Patient Discharge , Emergency Service, Hospital , Oxygen Inhalation Therapy , Oxygen/therapeutic use
4.
J Clin Transl Sci ; 6(1): e142, 2022.
Article in English | MEDLINE | ID: covidwho-2185007

ABSTRACT

Background: Coronavirus Disease 2019 (COVID-19) instigated a flurry of clinical research activity. The unprecedented pace with which trials were launched left an early void in data standardization, limiting the potential for subsequent data pooling. To facilitate data standardization across emerging studies, the National Heart, Lung, and Blood Institute (NHLBI) charged two groups with harmonizing data collection, and these groups collaborated to create a concise set of COVID-19 Common Data Elements (CDEs) for clinical research. Methods: Our iterative approach followed three guiding principles: 1) draw from existing multi-center COVID-19 clinical trials as precedents, 2) incorporate existing data elements and data standards whenever possible, and 3) alignment to data standards that facilitate data sharing and regulatory submission. We also supported rapid implementation of the CDEs in NHLBI-funded studies and iteratively refined the CDEs based on feedback from those study teams. Results: The NHLBI COVID-19 CDEs are publicly available and being used for current COVID-19 clinical trials. CDEs are organized into domains, and each data element is classified within a three-tiered prioritization system. The CDE manual is hosted publicly at https://nhlbi-connects.org/common_data_elements with an accompanying data dictionary and implementation guidance. Conclusions: The NHLBI COVID-19 CDEs are designed to aid data harmonization across studies to achieve the benefits of pooled analyses. We found that organizing CDE development around our three guiding principles focused our efforts and allowed us to adapt as COVID-19 knowledge advanced. As these CDEs continue to evolve, they could be generalized for use in other acute respiratory illnesses.

5.
Influenza Other Respir Viruses ; 16(6): 1133-1140, 2022 11.
Article in English | MEDLINE | ID: covidwho-2001656

ABSTRACT

BACKGROUND: Acute respiratory infections (ARIs) result in millions of illnesses and hundreds of thousands of hospitalizations annually in the United States. The responsible viruses include influenza, parainfluenza, human metapneumovirus, coronaviruses, respiratory syncytial virus (RSV), and human rhinoviruses. This study estimated the population-based hospitalization burden of those respiratory viruses (RVs) over 4 years, from July 1, 2015 to June 30, 2019, among adults ≥18 years of age for Allegheny County (Pittsburgh), Pennsylvania. METHODS: We used population-based statewide hospital discharge data, health system electronic medical record (EMR) data for RV tests, census data, and a published method to calculate burden. RESULTS: Among 26,211 eligible RV tests, 67.6% were negative for any virus. The viruses detected were rhinovirus/enterovirus (2552; 30.1%), influenza A (2,299; 27.1%), RSV (1082; 12.7%), human metapneumovirus (832; 9.8%), parainfluenza (601; 7.1%), influenza B (565; 6.7%), non-SARS-CoV-2 coronavirus (420; 4.9% 1.5 years of data available), and adenovirus (136; 1.6%). Most tests were among female (58%) and White (71%) patients with 60% of patients ≥65 years, 24% 50-64 years, and 16% 18-49 years. The annual burden ranged from 137-174/100,000 population for rhinovirus/enterovirus; 99-182/100,000 for influenza A; and 56-81/100,000 for RSV. Among adults <65 years, rhinovirus/enterovirus hospitalization burden was higher than influenza A; whereas the reverse was true for adults ≥65 years. RV hospitalization burden increased with increasing age. CONCLUSIONS: These virus-specific ARI population-based hospital burden estimates showed significant non-influenza burden. These estimates can serve as the basis for several areas of research that are essential for setting funding priorities and guiding public health policy.


Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Paramyxoviridae Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Adult , COVID-19/epidemiology , Female , Hospitalization , Humans , Infant , Influenza, Human/epidemiology , Paramyxoviridae Infections/epidemiology , Respiratory Tract Infections/epidemiology
6.
JAMA Netw Open ; 5(7): e2220957, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1929711

ABSTRACT

Importance: The effectiveness of monoclonal antibodies (mAbs), casirivimab-imdevimab and sotrovimab, is unknown in patients with mild to moderate COVID-19 caused by the SARS-CoV-2 Delta variant. Objective: To evaluate the effectiveness of mAb against the Delta variant compared with no mAb treatment and to ascertain the comparative effectiveness of casirivimab-imdevimab and sotrovimab. Design, Setting, and Participants: This study comprised 2 parallel studies: (1) a propensity score-matched cohort study of mAb treatment vs no mAb treatment and (2) a randomized comparative effectiveness trial of casirivimab-imdevimab and sotrovimab. The cohort consisted of patients who received mAb treatment at the University of Pittsburgh Medical Center outpatient infusion centers and emergency departments from July 14 to September 29, 2021. Participants were patients with a positive SARS-CoV-2 test result who were eligible to receive mAbs according to emergency use authorization criteria. Exposure: For the trial, patients were randomized to either intravenous casirivimab-imdevimab or sotrovimab according to a system therapeutic interchange policy. Main Outcomes and Measures: For the cohort study, risk ratio (RR) estimates for the primary outcome of hospitalization or death by 28 days were compared between mAb treatment and no mAb treatment using propensity score-matched models. For the comparative effectiveness trial, the primary outcome was hospital-free days (days alive and free of hospitalization) within 28 days after mAb treatment, where patients who died were assigned -1 day in a bayesian cumulative logistic model adjusted for treatment location, age, sex, and time. Inferiority was defined as a 99% posterior probability of an odds ratio (OR) less than 1. Equivalence was defined as a 95% posterior probability that the OR was within a given bound. Results: A total of 3069 patients (1023 received mAb treatment: mean [SD] age, 53.2 [16.4] years; 569 women [56%]; 2046 had no mAb treatment: mean [SD] age, 52.8 [19.5] years; 1157 women [57%]) were included in the prospective cohort study, and 3558 patients (mean [SD] age, 54 [18] years; 1919 women [54%]) were included in the randomized comparative effectiveness trial. In propensity score-matched models, mAb treatment was associated with reduced risk of hospitalization or death (RR, 0.40; 95% CI, 0.28-0.57) compared with no treatment. Both casirivimab-imdevimab (RR, 0.31; 95% CI, 0.20-0.50) and sotrovimab (RR, 0.60; 95% CI, 0.37-1.00) were associated with reduced hospitalization or death compared with no mAb treatment. In the clinical trial, 2454 patients were randomized to receive casirivimab-imdevimab and 1104 patients were randomized to receive sotrovimab. The median (IQR) hospital-free days were 28 (28-28) for both mAb treatments, the 28-day mortality rate was less than 1% (n = 12) for casirivimab-imdevimab and less than 1% (n = 7) for sotrovimab, and the hospitalization rate by day 28 was 12% (n = 291) for casirivimab-imdevimab and 13% (n = 140) for sotrovimab. Compared with patients who received casirivimab-imdevimab, those who received sotrovimab had a median adjusted OR for hospital-free days of 0.88 (95% credible interval, 0.70-1.11). This OR yielded 86% probability of inferiority for sotrovimab vs casirivimab-imdevimab and 79% probability of equivalence. Conclusions and Relevance: In this propensity score-matched cohort study and randomized comparative effectiveness trial, the effectiveness of casirivimab-imdevimab and sotrovimab against the Delta variant was similar, although the prespecified criteria for statistical inferiority or equivalence were not met. Both mAb treatments were associated with a reduced risk of hospitalization or death in nonhospitalized patients with mild to moderate COVID-19 caused by the Delta variant. Trial Registration: ClinicalTrials.gov Identifier: NCT04790786.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Bayes Theorem , Cohort Studies , Female , Humans , Middle Aged , Prospective Studies
7.
Contemp Clin Trials ; 119: 106822, 2022 08.
Article in English | MEDLINE | ID: covidwho-1885667

ABSTRACT

BACKGROUND: Monoclonal antibodies (mAb) that neutralize SARS-CoV-2 decrease hospitalization and death compared to placebo in patients with mild to moderate COVID-19; however, comparative effectiveness is unknown. We report the comparative effectiveness of bamlanivimab, bamlanivimab-etesevimab, and casirivimab-imdevimab. METHODS: A learning health system platform trial in a U.S. health system enrolled patients meeting mAb Emergency Use Authorization criteria. An electronic health record-embedded application linked local mAb inventory to patient encounters and provided random mAb allocation. Primary outcome was hospital-free days to day 28. Primary analysis was a Bayesian model adjusting for treatment location, age, sex, and time. Inferiority was defined as 99% posterior probability of an odds ratio < 1. Equivalence was defined as 95% posterior probability the odds ratio is within a given bound. FINDINGS: Between March 10 and June 25, 2021, 1935 patients received treatment. Median hospital-free days were 28 (IQR 28, 28) for each mAb. Mortality was 0.8% (1/128), 0.8% (7/885), and 0.7% (6/922) for bamlanivimab, bamlanivimab-etesevimab, and casirivimab-imdevimab, respectively. Relative to casirivimab-imdevimab (n = 922), median adjusted odds ratios were 0.58 (95% credible interval [CI] 0.30-1.16) and 0.94 (95% CI 0.72-1.24) for bamlanivimab (n = 128) and bamlanivimab-etesevimab (n = 885), respectively. These odds ratios yielded 91% and 94% probabilities of inferiority of bamlanivimab versus bamlanivimab-etesevimab and casirivimab-imdevimab, and an 86% probability of equivalence between bamlanivimab-etesevimab and casirivimab-imdevimab. INTERPRETATION: Among patients with mild to moderate COVID-19, bamlanivimab-etesevimab or casirivimab-imdevimab treatment resulted in 86% probability of equivalence. No treatment met prespecified criteria for statistical equivalence. Median hospital-free days to day 28 were 28 (IQR 28, 28) for each mAb. FUNDING AND REGISTRATION: This work received no external funding. The U.S. government provided the reported mAb. This trial is registered at ClinicalTrials.gov, NCT04790786.


Subject(s)
COVID-19 , Learning Health System , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Bayes Theorem , Humans , SARS-CoV-2
8.
Trials ; 22(1): 363, 2021 May 25.
Article in English | MEDLINE | ID: covidwho-1243818

ABSTRACT

OBJECTIVES: The primary objective is to evaluate the comparative effectiveness of COVID-19 specific monoclonal antibodies (mABs) with US Food and Drug Administration (FDA) Emergency Use Authorization (EUA), alongside UPMC Health System efforts to increase patient access to these mABs. TRIAL DESIGN: Open-label, pragmatic, comparative effectiveness platform trial with response-adaptive randomization PARTICIPANTS: We will evaluate patients who meet the eligibility criteria stipulated by the COVID-19 mAB EUAs who receive mABs within the UPMC Health System, including infusion centers and emergency departments. EUA eligibility criteria include patients with mild to moderate COVID-19, <10 days of symptoms, and who are at high risk for progressing to severe COVID-19 and/or hospitalization (elderly, obese, and/or with specific comorbidities). The EUA criteria exclude patients who require oxygen for the treatment of COVID-19 and patients already hospitalized for the treatment of COVID-19. We will use data collected for routine clinical care, including data entered into the electronic medical record and from follow-up calls. INTERVENTION AND COMPARATOR: The interventions are the COVID-19 specific mABs authorized by the EUAs. All aspects of mAB treatment, including eligibility criteria, dosing, and post-infusion monitoring, are as per the EUAs. As a comparative effectiveness trial, all patients receive mAB treatment, and the interventions are compared against each other. When U.S. government mAB policies change (e.g., FDA grants or revokes EUAs), UPMC Health System policies and the evaluated mAB interventions will accordingly change. From November 2020 to February 2021, FDA issued EUAs for three mAB treatments (bamlanivimab; bamlanivimab and etesevimab; and casirivimab and imdevimab), and at trial launch on March 10, 2021 we evaluated all three. Due to a sustained increase in SARS-CoV-2 variants in the United States resistant to bamlanivimab administered alone, on March 24, 2021 the U.S. Government halted distribution of bamlanivimab alone, and UPMC accordingly halted bamlanivimab monotherapy on March 31, 2021. On April 16, 2021, FDA revoked the EUA for bamlanivimab monotherapy. At the time of manuscript submission, we are therefore evaluating the two mAB treatments authorized by EUAs (bamlanivimab and etesevimab; and casirivimab and imdevimab). MAIN OUTCOMES: The primary outcome is total hospital free days (HFD) at 28 days after mAB administration, calculated as 28 minus the number of days during the index stay (if applicable - e.g., for patients admitted to hospital after mAB administration in the emergency department) minus the number of days readmitted during the 28 days after treatment. This composite endpoint captures the number of days from the day of mAB administration to the 28 days thereafter, during which the patient is alive and free of hospitalization. Death within 28 days is recorded as -1 HFD, as the worst outcome. RANDOMISATION: We will start with equal allocation. Due to uncertainty in sample size, we will use a Bayesian adaptive design and response adaptive randomization to ensure ability to provide statistical inference despite variable sample size. When mABs are ordered by UPMC physicians as a generic referral order, the order is filled by UPMC pharmacy via therapeutic interchange. OPTIMISE-C19 provides the therapeutic interchange via random allocation. Infusion center operations teams and pharmacists use a mAB assignment application embedded in the electronic medical record to determine the random allocation. BLINDING (MASKING): This trial is open-label. However, outcome assessors conducting follow-up calls at day 28 are blinded to mAB assignment, and investigators are blinded to by-mAB aggregate outcome data until a statistical platform trial conclusion is reached. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): Sample size will be determined by case volume throughout the course of the pandemic, supply of FDA authorized mABs, and by that needed to reach a platform trial conclusion of inferiority, superiority, or futility of a given mAB. The trial will continue as long as more than one mAB type is available under EUA, and their comparative effectiveness is uncertain. TRIAL STATUS: Protocol Version 1.0, February 24, 2021. Recruitment began March 10, 2021 and is ongoing at the time of manuscript submission. The estimated recruitment end date is February 22, 2022, though the final end date is dependent on how the pandemic evolves, mAB availability, and when final platform trial conclusions are reached. As noted above, due to U.S. Government decisions, UPMC Health System halted bamlanivimab monotherapy on March 31, 2021. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04790786 . Registered March 10, 2021 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
COVID-19 , Aged , Antibodies, Monoclonal/adverse effects , Bayes Theorem , Humans , Random Allocation , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
9.
JAMA ; 324(21): 2165-2176, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-978083

ABSTRACT

Importance: Data on the efficacy of hydroxychloroquine for the treatment of coronavirus disease 2019 (COVID-19) are needed. Objective: To determine whether hydroxychloroquine is an efficacious treatment for adults hospitalized with COVID-19. Design, Setting, and Participants: This was a multicenter, blinded, placebo-controlled randomized trial conducted at 34 hospitals in the US. Adults hospitalized with respiratory symptoms from severe acute respiratory syndrome coronavirus 2 infection were enrolled between April 2 and June 19, 2020, with the last outcome assessment on July 17, 2020. The planned sample size was 510 patients, with interim analyses planned after every 102 patients were enrolled. The trial was stopped at the fourth interim analysis for futility with a sample size of 479 patients. Interventions: Patients were randomly assigned to hydroxychloroquine (400 mg twice daily for 2 doses, then 200 mg twice daily for 8 doses) (n = 242) or placebo (n = 237). Main Outcomes and Measures: The primary outcome was clinical status 14 days after randomization as assessed with a 7-category ordinal scale ranging from 1 (death) to 7 (discharged from the hospital and able to perform normal activities). The primary outcome was analyzed with a multivariable proportional odds model, with an adjusted odds ratio (aOR) greater than 1.0 indicating more favorable outcomes with hydroxychloroquine than placebo. The trial included 12 secondary outcomes, including 28-day mortality. Results: Among 479 patients who were randomized (median age, 57 years; 44.3% female; 37.2% Hispanic/Latinx; 23.4% Black; 20.1% in the intensive care unit; 46.8% receiving supplemental oxygen without positive pressure; 11.5% receiving noninvasive ventilation or nasal high-flow oxygen; and 6.7% receiving invasive mechanical ventilation or extracorporeal membrane oxygenation), 433 (90.4%) completed the primary outcome assessment at 14 days and the remainder had clinical status imputed. The median duration of symptoms prior to randomization was 5 days (interquartile range [IQR], 3 to 7 days). Clinical status on the ordinal outcome scale at 14 days did not significantly differ between the hydroxychloroquine and placebo groups (median [IQR] score, 6 [4-7] vs 6 [4-7]; aOR, 1.02 [95% CI, 0.73 to 1.42]). None of the 12 secondary outcomes were significantly different between groups. At 28 days after randomization, 25 of 241 patients (10.4%) in the hydroxychloroquine group and 25 of 236 (10.6%) in the placebo group had died (absolute difference, -0.2% [95% CI, -5.7% to 5.3%]; aOR, 1.07 [95% CI, 0.54 to 2.09]). Conclusions and Relevance: Among adults hospitalized with respiratory illness from COVID-19, treatment with hydroxychloroquine, compared with placebo, did not significantly improve clinical status at day 14. These findings do not support the use of hydroxychloroquine for treatment of COVID-19 among hospitalized adults. Trial Registration: ClinicalTrials.gov: NCT04332991.


Subject(s)
COVID-19 Drug Treatment , Hydroxychloroquine/therapeutic use , Adult , Aged , Female , Humans , Hydroxychloroquine/administration & dosage , Male , Middle Aged , Treatment Failure
10.
Ann Am Thorac Soc ; 17(9): 1144-1153, 2020 09.
Article in English | MEDLINE | ID: covidwho-781684

ABSTRACT

The ORCHID (Outcomes Related to COVID-19 treated with Hydroxychloroquine among In-patients with symptomatic Disease) trial is a multicenter, blinded, randomized trial of hydroxychloroquine versus placebo for the treatment of adults hospitalized with coronavirus disease (COVID-19). This document provides the rationale and background for the trial and highlights key design features. We discuss five novel challenges to the design and conduct of a large, multicenter, randomized trial during a pandemic, including 1) widespread, off-label use of the study drug before the availability of safety and efficacy data; 2) the need to adapt traditional procedures for documentation of informed consent during an infectious pandemic; 3) developing a flexible and robust Bayesian analysis incorporating significant uncertainty about the disease, outcomes, and treatment; 4) obtaining indistinguishable drug and placebo without delaying enrollment; and 5) rapidly obtaining administrative and regulatory approvals. Our goals in describing how the ORCHID trial progressed from study conception to enrollment of the first patient in 15 days are to inform the development of other high-quality, multicenter trials targeting COVID-19. We describe lessons learned to improve the efficiency of future clinical trials, particularly in the setting of pandemics. The ORCHID trial will provide high-quality, clinically relevant data on the safety and efficacy of hydroxychloroquine for the treatment of COVID-19 among hospitalized adults.Clinical trial registered with www.clinicaltrials.gov (NCT04332991).


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Hydroxychloroquine/administration & dosage , Pandemics , Pneumonia, Viral/drug therapy , Adult , Antimalarials/administration & dosage , COVID-19 , Coronavirus Infections/epidemiology , Dose-Response Relationship, Drug , Hospitalization/trends , Humans , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Single-Blind Method , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL